Alternation Properties of Tchebyshev-Systems and the Existence of Adjoined Functions

ROLAND ZIELKE

Lehrstuhl für Biomathematik der Universität Tübingen, 74 Tübingen, West Germany

Communicated by G. Meinardus

A finite-dimensional linear space of functions is called a T-space (Tchebyshev-space) iff it has a basis satisfying Haar's condition. A function f is called adjoined to an *n*-dimensional T-space U_n iff span $U_n \cup \{f\}$ is an (n + 1)-dimensional T-space.

Rutman mentioned (see Krein [2]) that there are *T*-spaces for which no adjoined functions exist. Apparently, no such example has been published.

Laasonen [3] showed that if U_n consists of *n* times continuously differentiable functions defined on an interval, then there is a function adjoined to U_n . Later Karlin and Studden [1] proved the same and then applied a rather complicated limiting process to infer the same conclusion when U_n consists of continuous functions defined on an interval.

Rutman [4] stated that if U_n consists of functions continuous from the right and defined on an open interval, there is a function adjoined to U_n . Unfortunately, he gave only an outline of his proof.

Throughout this paper we shall consider only *T*-spaces of functions defined on totally ordered sets. We need the following definitions.

DEFINITION. A totally ordered set M has property (D) if it contains no smallest or greatest element and for every two distinct elements of M there is an element between them.

DEFINITION. Let U_n be an *n*-dimensional *T*-space (of functions defined) on a totally ordered set *M*. U_n is called oriented iff for every $f \in U_n$ there are at most *n* points $t_1, ..., t_n \in M$ with $t_1 < \cdots < t_n$ and sign $f(t_i) = -\text{sign } f(t_{i+1}) \neq 0$ for i = 1, ..., n - 1.

In a previous paper [5] we proved that if M is a totally ordered set and has property (D), and U_n is an *n*-dimensional oriented T-space on M, $n \ge 2$, U_n contains an (n-1)-dimensional oriented T-space. Our main result is

that under the same assumptions there is a function adjoined to U_n such that span $U_n \cup \{f\}$ is oriented, too.

The proof consists of two parts. In Section 2 we define an operation "relative differentiation" that transforms U_n into an (n-1)-dimensional *T*-space. In the second part of the proof we show that if there is a function adjoined to this space, the same is true for U_n .

Considerable simplification has been obtained in many arguments by replacing determinant inequalities by alternation properties. In addition, no limit process (as in [1, p. 241–246]) is needed.

Some of the results, such as Theorems 1 and 2, seem to be of independent interest.

1. PRELIMINARIES, CHAINS OF T-SPACES

We first recall a few definitions and propositions from [5].

DEFINITION. Let M be a totally ordered set, f a real-valued function defined on M, and $t_1, ..., t_k \in M$ with $t_1 < \cdots < t_k$.

(a) $t_1, ..., t_k$ form a strong alternation of f of length k iff sign $f(t_i) = -\text{sign } f(t_{i+1}) \neq 0$ for i = 1, ..., k - 1.

(b) $t_1, ..., t_k$ form a weak alternation of f of length k iff sign $f(t_i) = -\text{sign } f(t_{i+1})$ for i = 1, ..., k - 1.

(c) $t_1, ..., t_n$ form a quasialternation of f of length k iff sign $(f(t_i) - f(t_{i+1})) = -\text{sign}(f(t_{i+1}) - f(t_{i+2}))$ for i = 1, ..., k - 2.

LEMMA 1. Let M be a totally ordered set, and U_n an n-dimensional linear space of functions defined on M. Then the following statements are equivalent:

(a) U_n is an oriented T-space.

(b) U_n is a T-space, and no $f \in U_n \setminus \{0\}$ has a weak alternation of length exceeding n.

(c) If $f_1, ..., f_n$ is a basis of M, $det(f_i(t_i))_{n,n}$ has constant sign for all $t_1, ..., t_n \in M$ with $t_1 < \cdots < t_n$.

LEMMA 2. Let *M* be a totally ordered set, and U_n an *n*-dimensional oriented *T*-space on *M*, $n \ge 1$. Assume $f \in U_n \setminus \{0\}$ with zeros $t_1 < \cdots < t_{n-1}$. Then all point sets $s_1, \ldots, s_n \in M$ with $s_1 < t_1 < s_2 < t_2 < \cdots < t_{n-1} < s_n$ form strong alternations of *f*.

For the following it will be convenient to define chains of T-spaces.

ROLAND ZIELKE

DEFINITION. The T-spaces U_i , dim $U_i = i$, i = 1, ..., n, form a chain, if $U_1 \subset \cdots \subset U_n$.

If, moreover, U_1 consists of the constant functions, the chain is called normed.

In the following we shall use a stronger version of the concept of adjoined functions.

DEFINITION. Let U_n be an *n*-dimensional oriented *T*-space on a totally ordered set *M*. *f* is called strongly adjoined to U_n iff span $U_n \cup \{f\}$ is an (n + 1)-dimensional oriented *T*-space on *M*.

If U_n is an *n*-dimensional oriented *T*-space on a set *M* which has property (*D*), we may by Corollary 2 in [5] assume that there is a chain $U_1 \subseteq \cdots \subseteq U_n$ of oriented *i*-dimensional *T*-spaces U_i , i = 1, ..., n.

For the proof of existence of a strongly adjoined function under the above hypotheses, we may further assume that the chain $U_1 \subset \cdots \subset U_n$ is normed.

In the following we mean by hypothesis (A): M is totally ordered, $U_1 \subset \cdots \subset U_n$ is a normed chain of oriented T-spaces on M with $n \ge 2$.

LEMMA 3. If hypothesis (A) is fulfilled, and $f \in U_n \setminus U_{n-1}$, every quasialternation of f has at most length n.

Proof. n = 2. Let $f \in U_2 \setminus U_1$ and g(t) = 1 for $t \in M$. Then f and g form a basis of U_2 , and for $t, u \in M$ with t < u

$$\det \begin{pmatrix} 1 & 1\\ f(t) & f(u) \end{pmatrix} = f(u) - f(t)$$

has constant sign $\neq 0$ because U_2 is oriented. So f is strictly monotonous.

 $n-1 \Rightarrow n$. Suppose there is an $f \in U_n \setminus U_{n-1}$ and points $t_1 < \cdots < t_{n+1}$ with

$$f(t_i) \ge f(t_{i+1}),$$
 if *i* is odd,
 $f(t_i) \le f(t_{i+1}),$ if *i* is even, $i = 1,..., n.$

Let $g \in U_{n-1}$ be the function that interpolates f in $t_2, ..., t_n$. By induction hypothesis we have

 $g(t) \leq g(t_2) \quad \text{for } t < t_2,$ $g(t) \leq g(t_n) \quad \text{for } t > t_n, \quad \text{if } n \text{ is even,}$ $g(t) \geq g(t_n) \quad \text{for } t > t_n, \quad \text{if } n \text{ is odd.}$ Hence, $t_1, ..., t_{n+1}$ is a weak alternation of f - g of length n + 1, contradicting the hypothesis that U_n is oriented.

Remarks. The statement of Lemma 3 is false if U_n contains no *T*-space of dimension n-1. In [5, Example 3], *R* is a three-dimensional oriented *T*-space containing no two-dimensional *T*-subspace. Indeed, for sufficiently small $\epsilon > 0$ the function $f_{\epsilon} \in R$ with $f_{\epsilon}(t) := t \sin(t - \epsilon)$ has quasialternations of length 4.

Lemma 3 says that for every $f \in U_n \setminus U_{n-1}$ there are at most n-2 points $t_1, \ldots, t_{n-2} \in M$ with $t_1 < \cdots < t_{n-2}$ such that for the sets $A_1 := \{x \in M \mid x < t_1\}, A_k := \{x \in M \mid t_{k-1} < x < t_k\}, k = 2, \ldots, n-2, A_{n-1} := \{x \in M \mid t_{n-2} < x\}$ either f or -f is strictly increasing on A_1 , A_3 , A_5 ,... and strictly decreasing on A_2 , A_4 , A_6 ,....

DEFINITION. If *M* is totally ordered, we define $I(a, b) := \{x \in M \mid a \leq x \leq b\}$ for all $a, b \in M$ with a < b.

LEMMA 4. If hypothesis (A) is fulfilled, and $f \in U_n$, then f is bounded on every set I(a, b).

Proof. n = 2. As every $f \in U_2$ is strictly monotonous on M, on I(a, b) the function f is bounded by f(a) and f(b).

 $n-1 \Rightarrow n$. Suppose there is $f \in U_n \setminus U_{n-1}$ and $a, b \in M$ with a < b such that f is not bounded on I(a, b). Because of Lemma 3 there are $c, d \in I(a, b)$ with c < d such that f is strictly monotonous and unbounded on $I(c, d) \setminus \{d\}$. Without loss of generality let f be monotonously increasing and unbounded from above on I(c, d). Obviously, I(c, d) contains infinitely many points.

Let $t_1, ..., t_{n-1} \in I(c, d)$ with $t_1 < \cdots < t_{n-1} < d$. Without loss of generality assume $f(t_{n-1}) = 0$. Define $g \in U_{n-1}$ by

$$g(t_i) = (-1)^{n-1-i}$$
 for $i = 1, ..., n-2$, $g(t_{n-1}) = 0$. (1)

For $t > t_{n-1}$ we have g(t) > 0, because otherwise g had a weak alternation of length n. By induction hypothesis g is bounded on I(a, b), say |g(t)| < K for $t \in I(a, b)$.

Let $t_{n+1} = b$. Then there is an $\alpha > 0$ such that $t_1, ..., t_{n-1}$ is a weak alternation of $g - \alpha f$ and

$$(g - \alpha f)(t_{n-2}) < 0, \qquad (g - \alpha f)(t_{n-1}) = 0, \qquad (g - \alpha f)(t_{n+1}) > 0.$$
 (2)

As f is unbounded from above on $I(t_{n-1}, t_{n+1})$, there is a $t_n \in M$ with $t_{n-1} < t_n < t_{n+1}$ and $(g - \alpha f)(t_n) < 0$. Thus, t_1, \dots, t_{n+1} is a weak alterna-

tion of $g - \alpha f$ of length n + 1, contradicting the hypothesis that U_n is oriented.

As an application we get the following theorem.

THEOREM 1. Let M = (a, b) be an open interval and $U_1 \subset \cdots \subset U_n \subset C(M)$ a normed chain of T-spaces. If all $f \in U_n$ are bounded, they may be continuously extended to functions \overline{f} defined on \overline{M} , and the spaces $\overline{U}_i := \{\overline{f} \in C(\overline{M}) | \overline{f} |_M = f \text{ for an } f \in U_i\}$ form a normed chain of T-spaces on \overline{M} .

Proof. Suppose there is an $f \in U_i \setminus \{0\}$ such that its extension \overline{f} has *i* zeros $t_1 < \cdots < t_i$. By Lemma 3 *M* can be split into at most i - 1 intervals in each of which *f* is strictly monotonous. The first interval lies left of t_2 , and the second contains points left of t_2 , too. Part of the third interval lies left of t_3 , and so on until finally part of the (i - 1)st interval lies left of t_{i-1} . So *f* is strictly monotonous right of t_{i-1} and cannot approach zero again.

2. Relative Derivatives

DEFINITION. Let M be totally ordered, $a \in M$, and f a real-valued function defined on M. Then f has the right side limit α in a (written $\alpha = M - \lim_{x \to a+} f(x)$), iff for every $\epsilon > 0$ there is a $y \in M$ with a < y and $|f(x) - \alpha| < \epsilon$ for all $x \in M$ with $a < x \leq y$.

The limits $M - \lim_{x \to a^+} \inf f(x)$ and $M - \lim_{x \to a^+} \sup f(x)$ and the corresponding left side limits are defined analogously. If, for example, $a, b \in M$ are two points with a < b such that there is no point between them, we have $M - \lim_{x \to a^+} f(x) = f(b)$ and $M - \lim_{x \to b^-} f(x) = f(a)$.

THEOREM 2. Let hypothesis (A) be satisfied, and assume M contains no smallest or greatest element. Then we have for any fixed $f_2 \in U_2 \setminus U_1$:

(a) There is a linear operator $D_+: U_n \to \mathbb{R}^n$, defined by

$$(D_+f)(a) := M - \lim_{x \to a^+} \frac{f(x) - f(a)}{f_2(x) - f_2(a)}$$

(b) The spaces $D_+U_i := \{D_+f \mid f \in U_i\}, i = 1,...,n, have dimension i - 1 and form a normed chain of oriented T-spaces on M.$

Proof. n = 2. D_+U_2 is the space of constant functions on M.

 $n-1 \Rightarrow n$: (1) Existence of D_+f . Let $a \in M$ fixed, and $f \in U_n$. If there is a $y \in M$ with a < y such that no point of M lies between a and y, we have

 $D_+f(a) = (f(y) - f(a)/(f_2(y) - f_2(a)))$. Now we assume that for every $y \in M$ with a < y there is an $x \in M$ with a < x < y. Without loss of generality we further assume that $f_2(a) = f(a) = 0$, f_2 is strictly increasing and there is a $y_1 \in M$ with $a < y_1$ such that for all $t \in M$ with $a < t < y_1$ we have f(t) > 0.

First suppose

$$M - \lim_{t \to a^+} \sup \frac{f(t)}{f_2(t)} = \infty.$$

Let $t_1, ..., t_{n-1} \in M$ with $t_1 < \cdots < t_{n-1} = a$, and let $g \in U_{n-1}$ be defined by (1). g(t) is positive for t > a, because otherwise g would have a weak alternation of length n. As $f(t)/f_2(t) = (f(t)/g(t)/(g(t)/f_2(t)))$ for t > a and $D_+g(a) = M - \lim_{t \to a+} (g(t)/f_2(t))$ exists by induction hypothesis, it follows that $M - \lim_{t \to a+} \sup(f(t)/g(t)) = \infty$.

Let $t_{n+1} \in M$ with $t_{n+1} > a$. Then there is an $\alpha > 0$ such that $t_1, ..., t_{n-1}$ is a weak alternation of $g - \alpha f$ with (2). Because of $M - \lim_{t \to a^+} \sup(f(t)/g(t)) = \infty$ there is a $t_n \in M$ with $t_{n-1} < t_n < t_{n+1}$ and $(g - \alpha f)(t_n) < 0$. The points $t_1, ..., t_{n+1}$ form a weak alternation of $g - \alpha f$ of length n + 1 in contradiction to Lemma 1.

Now suppose we had

$$\beta := M - \lim_{t \to a+} \inf \left(f(t) / f_2(t) \right) < \gamma := M - \lim_{t \to a+} \sup \left(f(t) / f_2(t) \right).$$

If we let $\delta := (\beta + \gamma)/2$, then for all $y \in M$ with a < y there are $u, v \in M$ with a < u, v < y and $(f - \delta f_2)(u) < 0 < (f - \delta f_2)(v)$. As we may choose y = u or y = v, there exist sequences $u_1, u_3, ...$ and $v_2, v_4, ...$ in M with $u_1 > v_2 > u_3 > v_4 > \cdots > a$ and $(f - \delta f_2)(u_i) < 0 < (f - \delta f_2)(v_{i+1})$ for i = 1, 3, 5, This again contradicts Lemma 1.

(2) D_+U_n is an (n-1)-dimensional T-space. Suppose there is an $f \in U_n \setminus U_1$ such that D_+f has zeros $t_1 < \cdots < t_{n-1}$. Let $g \in U_{n-1}$ be the function that interpolates f in t_1, \ldots, t_{n-1} . Then we have $D_+(g-f)(t_i) = D_+g(t_i)$ for $i = 1, \ldots, n-1$, and $D_+g \in D_+U_{n-1}$. From Lemma 2 it follows that t_1, \ldots, t_{n-1} is a weak alternation of $D_+(g-f)$ and so of D_+g , too. This contradicts the induction hypothesis that D_+U_{n-1} is an (n-2)-dimensional oriented T-space. Because of U_1 = kernel D_+ we have

$$\dim D_+U_n = \dim U_n - \dim \text{ kernel } D_+ = n - 1.$$

(3) D_+U_n is oriented. Suppose there are $f \in U_n$ and points $t_1, ..., t_n \in M$ with $t_1 < \cdots < t_n$ and $(-1)^i D_+f(t_i) > 0$ for i = 1, ..., n. Then there are points $u_1, ..., u_n \in M$ with $t_1 < u_1 \leq t_2 < \cdots \leq t_n < u_n$ and $(-1)^i (f(u_i) - f(t_i))/(f_2(u_i) - f_2(t_i)) > 0$ for i = 1, ..., n. So we have $(-1)^i (f(u_i) - f(t_i)) > 0$ for i = 1, ..., n. This, however, contradicts Lemma 3. *Remark.* Theorem 2 does not hold if the *T*-spaces are not oriented, as the following example shows. Let

$$M = (-1, 1), f_1(t) = 1,$$

$$f_2(t) = t,$$

$$f_3(t) = \begin{cases} t^2 - 1 & \text{for } t \in (0, 1) \\ 1 - t^2 & \text{for } t \in (-1, 0], \end{cases}$$

and

$$U_i = \text{span}\{f_1, \dots, f_i\}, \quad i = 1, 2, 3.$$

 $U_1 \subset U_2 \subset U_3$ is a normed chain of *T*-spaces, but U_3 is not oriented, and we have

$$M - \lim_{x \to 0+} \frac{f_3(x) - f_3(0)}{f_2(x) - f_2(0)} = \infty.$$

The version of Theorem 2 for left side limits is obtained by replacing " D_+ " by " D_- " and " $M - \lim_{x \to a_+}$ " by " $M - \lim_{x \to a_-}$ " in Theorem 2.

3. REAL DOMAINS, ADJOINED FUNCTIONS

With hypothesis (A) every $f_2 \in U_2 \setminus U_1$ is strictly monotonous on M by Lemma 3. We define $V_i := \{h: f_2(M) \to \mathbb{R} \mid h = f \circ f_2^{-1} \text{ for an } f \in U_i\}, i = 1, ..., n$. Then $V_1 \subset \cdots \subset V_n$ is a normed chain of oriented T-spaces on $f_2(M)$, and V_2 consists of the linear functions restricted to $f_2(M)$. The following statements are obvious.

(1) If M has property (D), so does $f_2(M)$.

(2) If M is a real interval and f_2 is continuous, $f_2(M)$ is an interval, and f_2 is a homeomorphism.

(3) A function $g: f_2(M) \to \mathbb{R}$ is strongly adjoined to V_n iff $g \circ f_2$ is strongly adjoined to U_n .

For the proof of existence of strongly adjoined functions under hypothesis (A), we may—because of the last statement—assume that the domain M is real and that U_2 consists of the linear functions restricted to M.

LEMMA 5. Assume that hypothesis (A) is fulfilled, that M is real, that M contains no smallest or greatest element and that U_2 consists of the linear functions restricted to M. Denote by I the open interval (inf M, sup M). Then every $f \in U_n$ can be extended to a function \overline{f} continuous on I.

178

Proof. n = 2. Every $f \in U_2$ can be extended to a linear function on *I*.

 $n-1 \Rightarrow n$. First we show that every $f \in U_n$ may be continuously extended to $I \cap \overline{M}$. Let $a \in I \cap (\overline{M} \setminus M)$ and $f \in U_n$ fixed. Because of Lemma 3, I can be split into $k \leq n-1$ subintervals $A_1, ..., A_k$ such that f is strictly monotonous on each of the sets $M \cap A_i$, i = 1, ..., k. As M contains no smallest or greatest element, there exist $b := \sup\{x \in M \mid x < a\}$ and $c := \inf\{x \in M \mid a < x\}$. Because of Lemmas 3 and 4 there exist the limits

$$f_{-}(b) := M - \lim_{x \to b^{-}} f(x)$$
 and $f_{+}(c) := M - \lim_{x \to c^{+}} f(x)$.

For b = a < c we define $\overline{f}(a) = f_{-}(b)$, for b < a = c we define $\overline{f}(a) = f_{+}(c)$. For b = a = c it remains to show: $f_{-}(a) = f_{+}(a)$.

Suppose we had $f_{-}(a) \neq f_{+}(a)$, say $0 = f_{-}(a) < f_{+}(a)$ without loss of generality. Let $t_1, ..., t_{n-2} \in M$ with $t_1 < \cdots < t_{n-2} < a$. For every $h \in U_{n-1} \setminus \{0\}$ with $h(t_1) = \cdots = h(t_{n-2}) = 0$ we have $\bar{h}(a) \neq 0$ because of Lemma 3. Now let $h_0 \in U_{n-1}$ with $h_0(t_i) = (-1)^{n-1-i}$ for i = 1, ..., n-2. For $g := \bar{h}(a) \cdot h_0 - \bar{h}_0(a) \cdot h$ we get $g(t_i) = (-1)^{n-1-i}$ for i = 1, ..., n-2 and $\bar{g}(a) = 0$. Furthermore, Lemma 3 yields g(t) > 0 for all $t \in M$ with a < t. Let $t_{n+1} \in M$ with $a < t_{n+1}$. Then there is an $\alpha > 0$ such that $t_1, ..., t_{n-2}$ form a strong alternation of $g - \alpha f$ and

$$(g - \alpha f)(t_{n-2}) < 0,$$

$$(\bar{g} - \alpha f)(a) = 0,$$

$$(g - \alpha f)(t_{n+1}) > 0.$$

As we have $f_+(a) > \bar{g}(a) = 0$, there is a $t_n \in M$ with $a < t_n < t_{n+1}$ and $(g - \alpha f)(t_n) < 0$. Besides, there is a $t_{n-1} \in M$ with $t_{n-2} < t_{n-1} < a$ such that t_1, \ldots, t_{n+1} is a quasialternation of $g - \alpha f$ of length n + 1, contradicting Lemma 3. For $t \in I \setminus \overline{M}$ we put

$$\bar{f}(t) = \bar{f}(t_{-}) + \frac{t - t_{-}}{t_{+} - t_{-}}(\bar{f}(t_{+}) - \bar{f}(t_{-})),$$

where $t_{-} = \max\{u \in \overline{M} \mid u < t\}$ and $t_{+} = \min\{u \in \overline{M} \mid u > t\}$. Thereby we fill the "gaps" of \overline{M} with linear functions.

DEFINITION. Under the hypotheses of Lemma 5 we denote by \overline{U}_i the space of the functions \overline{f} with $f \in U_i$ as constructed in the proof of Lemma 5.

LEMMA 6. If the hypotheses of Lemma 5 are fulfilled and A is a compact subinterval of I, for every fixed $\overline{f} \in \overline{U}_n$ the difference quotient $(\overline{f}(b) - \overline{f}(a))/(b-a)$, $a, b \in A, a \neq b$, is bounded.

Proof. n = 2. The difference quotient is a constant.

 $n-1 \Rightarrow n$. Suppose there are sequences a_1, a_2, \dots and b_1, b_2, \dots in $A \cap M$ and an $f \in U_n$ with $a_k < b_k$ for all k and $|(f(b_k) - f(a_k)/(b_k - a_k)| \to \infty$ for $k \to \infty$. As A is compact we may without loss of generality assume that there are points $a, b \in A \cap \overline{M}$ with $a_k \to a$ and $b_k \to b$ for $k \to \infty$. As $|f(b_k) - f(a_k)|$ is bounded because of Lemma 4, $b_k - a_k$ goes to zero for $k \to \infty$, and so we have a = b.

Without loss of generality let $\overline{f}(a) = 0$ and $(f(b_k) - f(a_k))/(b_k - a_k) \to \infty$ for $k \to \infty$. Let $t_1, ..., t_{n-1} \in M$ with $t_1 < \cdots < t_{n-1} < a$, and define $g \in U_{n-1}$ by (1). g is strictly increasing on $M \cap (t_{n-1}, \infty)$ because of Lemma 3. Choose $t_{n+1} \in M$ with $a < t_{n+1}$. There is an $\alpha > 0$ such that $t_1, ..., t_{n-2}$ is a strong alternation of $g - \alpha f$ and $(g - \alpha f)(t_{n-2}) < (\overline{g} - \alpha \overline{f})(a) < (g - \alpha f)(t_{n+1})$. If k is sufficiently large, we get $t_{n-2} < a_k < b_k < t_{n+1}$,

$$egin{aligned} &(g-lpha f)(t_{n-2})<\min\{(g-lpha f)(a_k),(g-lpha f)(b_k)\}\ &<\max\{(g-lpha f)(a_k),(g-lpha f)(b_k)\}<(g-lpha f)(t_{n+1}), \end{aligned}$$

and from the induction hypothesis

$$\frac{(g-\alpha f)(b_k)-(g-\alpha f)(a_k)}{b_k-a_k}=\frac{g(b_k)-g(a_k)}{b_k-a_k}-\alpha \frac{f(b_k)-f(a_k)}{b_k-a_k}<0.$$

Hence follows $(g - \alpha f)(a_k) > (g - \alpha f)(b_k)$, and $t_1, ..., t_{n-2}, a_k, b_k, t_{n+1}$ form a quasialternation of $g - \alpha f$ of length n + 1, contradicting Lemma 3. Thus, the difference quotient (f(y) - f(x))/(y - x) is bounded for $x, y \in A \cap M, x \neq y$, and so for $x, y \in A \cap \overline{M}, x \neq y$, too.

Now choose $x \in A \setminus \overline{M}$ and $y \in A$. Then x is an inner point of an interval [1, r] with 1, $r \in A \cap \overline{M}$, on which \overline{f} is a linear function. For $y \in [1, r]$ we have (f(y) - f(x))/(y - x) = (f(r) - f(1))/(r - 1). For $y \notin [1, r]$, it is easy to see that

$$\left|\frac{f(y)-f(x)}{y-x}\right| \leqslant \max\left\{\left|\frac{f(y)-f(1)}{y-1}\right|, \left|\frac{f(y)-f(r)}{y-r}\right|, \left|\frac{f(r)-f(1)}{r-1}\right|\right\}.$$

For $y \in A \cap \overline{M}$ the right side is bounded, for $y \notin A \cap \overline{M}$ replace (x, y) by (y, 1) or (y, r) and apply the argument again.

LEMMA 7. Under the hypotheses of Lemma 5 and with the above notations every $\overline{f} \in \overline{U}_n$ has the following properties:

- (a) \tilde{f} is absolutely continuous on every compact subinterval of I.
- (b) \tilde{f} is right side differentiable on I.

(c) The right side derivative \overline{f}_+ has no strong atternations of length greater n-1.

(d) \bar{f}_{+}' is bounded on every compact subinterval of I.

(e) \overline{f}_{+}' is right side continuous on I.

Proof. Let $\overline{f} \in \overline{U}_n$ fixed:

(a) By Lemma 6 \bar{f} is Lipschitz-bounded on every compact subinterval of I and thus absolutely continuous.

(b) From Lemma 6 it is clear that for every $a \in I$ we have

$$\lim_{x\to a^+}\sup\frac{\bar{f}(x)-\bar{f}(a)}{x-a}<\infty$$

Without loss of generality let $a = \overline{f}(a) = 0$.

Suppose $\beta := \lim_{x\to 0+} \inf(\overline{f}(x)/x) < \gamma := \lim_{x\to 0+} \sup(\overline{f}(x)/x)$. The construction of \overline{f} then yields $0 \in \overline{M}$ and

$$M - \lim_{x \to 0+} \inf (f(x)/x) < M - \lim_{x \to 0+} \sup (f(x)/x),$$

which is led to a contradiction in the same way as in part (1) of the proof of Theorem 2.

(c) Suppose \bar{f}_{+} has a strong alternation of length *n*. In the same way as in part (3) of the proof of Theorem 2 it is shown that then there is an $f \in U_n$ with a quasialternation of length n + 1, contradicting Lemma 3.

(d) The statement is clear because f is Lipschitz-bounded on every compact subinterval of I.

(e) Let $a \in I$. If a lies in an interval of $I \setminus \overline{M}$ or is the left endpoint of such an interval, the statement follows from the construction of \overline{f} . If a is the limit of a decreasing sequence of points in M, let $a = \overline{f}(a) = 0$ without loss of generality. Because of Lemma 7(c) and (d) there is an $\epsilon > 0$ such that \overline{f}_{+}' is monotonous and bounded in $[0, \epsilon]$, say monotonously increasing. Then \overline{f} is convex in $[0, \epsilon]$, and for all $x, y \in (0, \epsilon)$ with x < y < 2x we have

$$\frac{\bar{f}(y) - \bar{f}(x)}{y - x} \leqslant \frac{\bar{f}(2x) - \bar{f}(x)}{x} = 2 \frac{\bar{f}(2x)}{2x} - \frac{\bar{f}(x)}{x},$$

and so for every $x \in (0, \epsilon/2)$

$$\tilde{f}_{+}'(x) < 2 \, \frac{\tilde{f}(2x)}{2x} - \frac{\tilde{f}(x)}{x} \, .$$

Hence, follows $\lim_{x\to 0^+} \overline{f}_+'(x) \leqslant \overline{f}_+'(0)$, and so $\overline{f}_+'(0) = \lim_{x\to 0^+} \overline{f}_+'(x)$.

640/10/2-6

DEFINITION. If U is a linear space of functions defined on a set M, for every subset N of M we denote by E_N^M the projection operator defined by $E_N^M(f) = f|_N$.

LEMMA 8. Le $M \subseteq \mathbb{R}$ be a set with property (D), and $I := (\inf M, \sup M)$. Let Q be an n-dimensional linear space of real-valued right-continuous functions defined on I. For $f \in Q$ assume: f is bounded on every compact subinterval of I: f has no strong alternations of length greater n; on each of the intervals of $I \setminus \overline{M}$ f is equal to its value at the left endpoint of the interval. Let the restriction $E_M{}^I(Q)$ of Q to M be an n-dimensional (oriented) T-space. Then if we define $W := \{h: I \to \mathbb{R} \mid \text{there are } f \in Q, a \in I, \alpha \in \mathbb{R} \text{ such that for } x \in I \ h(x) = \int_a^x f(t) dt + \alpha\}, E_M{}^I(W) \text{ is an } (n + 1)\text{-dimensional oriented T-space on } M.$

Proof. (1) Suppose there is an $h \in W \setminus \{0\}$ with zeros $t_1, ..., t_{n+1} \in M$. $t_1 < \cdots < t_{n-1}$. Then there exist $f \in Q$, $a \in M$ and $\alpha \in \mathbb{R}$ such that

$$\int_{a}^{t_{i}} f(t) dt = -\alpha \quad \text{for} \quad i = 1, ..., n+1.$$

and, consequently,

$$\int_{t_i}^{t_{i+1}} f(t) \, dt = 0 \qquad \text{for} \quad i = 1, ..., n.$$

As $E_M{}^I(Q)$ is a T-space on M, and M has property (D), f cannot identically vanish on (t_i, t_{i+1}) , and so f has a strong alternation of length greater 1 on (t_i, t_{i+1}) . Thus, f has a strong alternation of length greater n on M contradicting the hypothesis.

(2) Suppose there are an $h \in W$ and $t_1, ..., t_{n+2} \in M$ with $t_1 < \cdots < t_{n-2}$ and $\alpha_i := (-1)^i h(t_i) > 0$ for i = 1, ..., n + 2. Then there exist $f \in Q$, $a \in M$ and $\alpha \in \mathbb{R}$ such that

$$\int_a^{t_i} f(t) dt = (-1)^i \alpha_i - \alpha \quad \text{for} \quad i = 1, ..., n+2,$$

and, consequently,

$$\int_{t_i}^{t_{i+1}} f(t) \, dt = (-1)^{i+1} \left(\alpha_i + \alpha_{i+1} \right) \quad \text{for} \quad i = 1, ..., n+1.$$

So $\int_{t_i}^{t_{i+1}} f(t) dt$ is alternatingly positive and negative for i = 1, ..., n + 1, and f has a strong alternation of length n + 1 contradicting the hypothesis.

LEMMA 8'. Let $M \subseteq \mathbb{R}$ be a set with property (D), and $I := (\inf M, \sup M)$.

For i = 1,...,n let Q_i be i-dimensional linear spaces of real-valued rightcontinuous functions defined on I. For $f \in Q_i$ assume: f is bounded on every compact subinterval of I; f has no strong alternations of length greater i; on each of the intervals of $I \setminus \overline{M}$ f is equal to its value at the left endpoint of the interval. Let Q_1 consist of the constant functions, assume $Q_1 \subset \cdots \subset Q_n$, and let $E_M{}^I(Q_1) \subset \cdots \subset E_M{}^I(Q_n)$ be a (normed) chain of (oriented) T-spaces on M. If we then define $W_1 := Q_1$, $W_{i+1} := \{h: I \to \mathbb{R} \mid \text{there are } f \in Q_i, a \in I,$ $\alpha \in \mathbb{R}$ such that for $x \in I$ $h(x) = \int_a^x f(t) dt + \alpha \}$ for i = 1,...,n, $E_M{}^I(W_1) \subset \cdots$ $\subset E_M{}^I(W_{n+1})$ is a normed chain of oriented T-spaces on M.

THEOREM 3. If hypothesis (A) is fulfilled and M has property (D), there is a function strongly adjoined to U_n .

Proof. Because of statement (3) at the beginning of this section we may assume without loss of generality that the hypotheses of Lemma 5 are fulfilled.

n = 2. The quadratic polynomials, restricted to M, form an oriented T-space containing U_2 .

 $n-1 \Rightarrow n$. As described in Lemma 5, every $f \in U_n$ can be extended to a function f defined on $I := (\inf M, \sup M)$ with the properties shown in Lemma 6 and 7. For i = 1, ..., n - 1 let $Q_i := \{\overline{f}_+ \mid \overline{f} \in \overline{U}_n\}$. Then $E_M{}^l(Q_1) \subset \cdots \subset E_M{}^l(Q_{n-1})$ is a normed chain of oriented T-spaces since we have $E_M(Q_i) = D_+U_{i+1}$ for i = 1, ..., n-1 (see Theorem 2). By induction hypothesis there is a function w: $M \to \mathbb{R}$ strongly adjoined to $E_M^{l}(Q_{n-1})$. We make the additional induction hypothesis that w is continuous on M, and extend w to a function g defined on all of I in the following way: Because of Lemmas 3 and 4 w can be continuously extended to a function \overline{w} defined on $I \cap \overline{M}$. For $t \in I \cap \overline{M}$, we set $g(t) = \overline{w}(t)$. If T is a connected subset of $I \setminus \overline{M}$, on T we set g constantly equal to its value in the left endpoint of T. g is bounded on every compact subinterval of I, and I can be split into $k \leq n-1$ subintervals A_k such that g is alternatingly increasing and decreasing (not necessarily in the strict sense) on $A_1, ..., A_k$. It is easy to see that then the last two statements hold for all functions in $Q_n := \operatorname{span} Q_{n-1} \cup \{g\}$. Now we can apply Lemma 8': The absolute continuity of the functions $\overline{f} \in \overline{U}_n$ yields

$$\int_{a}^{x} \overline{f}_{+}'(t) dt = f(x) - f(a) \quad \text{for all} \quad a, x \in I,$$

and we get $E_M{}^I(W_i) = U_i$ for i = 1, ..., n. Setting $h(x) := \int_a^x g(t) dt$ for some fixed $a \in M$, $h \mid_M$ is a function continuous on M and strongly adjoined to U_n .

With the remarks at the beginning of paragraph 1 we can formulate our main result.

ROLAND ZIELKE

THEOREM 3'. If M is a totally ordered set with property (D) and U_n is an n-dimensional oriented T-space on M with $n \ge 2$, there is a function strongly adjoined to U_n .

The following statement is also immediate from the proof of Theorem 3 together with statements (1) and (2) at the beginning of this Section.

THEOREM 4. If M is a real open interval and $U_n \subseteq C(M)$ is an n-dimensional T-space there is a function $f \in C(M)$ adjoined to U_n .

References

- 1. S. KARLIN AND W. J. STUDDEN, "Tchebycheff Systems: With applications in Analysis and Statistics," John Wiley and Sons, New York, 1966.
- 2. M. G. KREIN, The ideas of P. L. Čebyšev and A. A. Markov in the theory of limiting values of integrals and their further development, *Amer. Math. Soc. Transl.* **12** (1951), 1–122.
- 3. P. LAASONEN, Einige Sätze über Tschebyscheffsche Funktionensysteme, Ann. Acad. Sci. Fenn. 52 (1949), 3-24.
- 4. M. A. RUTMAN, Integral representation of functions forming a Markov-system (in Russian) Dokl. Akad. Nauk SSSR 164 (1965), 989–992.
- 5. R. ZIELKE, On Transforming a Tchebyshev-system into a Markov-system. J. Approximation Theory 9 (1973), 357-366.